Abstract

Abstract In southeast U.S., pH of source water from ponds used for overhead-irrigating container crops can exceed the range (pH 5.8-7.0) for best management practices. Artificially maintaining this pH range is not common among producers using surface water for irrigation, nor is it known whether this would affect growth. Therefore, the objective was to test whether this source water affects growth of five flowering shrubs in nurseries in eastern North Carolina. Pond water at six nurseries with a pH range of 4.9-8.1 (control) was injected before irrigation with sulfuric acid (lower) or potassium bicarbonate (raise) onsite to maintain a pH of 5.8-6.2 (treatment). Ambient photosynthesis (Aambient) and stomatal conductance (gs) was measured in July, August, and September on leaves of forsythia (Forsythia x intermedia 'Mindor‘ ShowOff®) during irrigation runtime mini-experiments at three nurseries. For mini-experiments, pre- and post-treatment physiology was measured for plants receiving 0 (hand watered), 30, or 60 minutes of treated or nontreated overhead irrigation. Dry weight of all shrubs and gas exchange of forsythia was not affected by high pH, low alkalinity (<100 ppm) irrigation water. Southeastern producers using this source water for overhead irrigation may not need to adopt a system that reduces pH to improve growth. Index words:, Container-grown, plant physiology, photosynthesis, stomatal conductance, ornamental. Chemicals used in this study: Potassium bicarbonate, sulfuric acid. Species used in this study: fragrant abelia, Zabelia tyaihyonii (Nakai) Hisauti & H.Hara 'SMNAMDS‘ Sweet Emotion®; butterfly bush, Buddleia x ‘Miss Molly'; border forsythia, Forsythia x intermedia ‘Mindor‘ Show Off®; panicled hydrangea, Hydrangea paniculata Siebold ‘SMHPLQF' Little Quick Fire®; landscape rose, Rosa x ‘ChewPatout' Oso Easy®.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.