Abstract

Taking advantages of negligible reabsorption and no phase separation, single-component white-emitting phosphors are believed as new promising color conversion materials for white light-emitting diodes. As a potential candidate, Mn-doped lead halide perovskites are studied intensively, but rare works can realize pure white emission with a single component due to the challenge for realizing sufficient energy transfer efficiency from perovskite to Mn at the desirable emission wavelengths. In this work, we reported the synthesis of single-component white light halide perovskite quantum dots (QDs) by doping Mn into the host of CsPb(Cl/Br)3@CsPb(Cl/Br)x core–amorphous shell (CAS). The small size of zero-dimensional core in CAS structure has a strong quantum confinement effect, which can enhance the energy transfer efficiency from halide perovskite to Mn impurity dramatically. Our result shows 19.3 times higher energy transfer efficiency for Mn-doped CAS than that of ordinary Mn-doped CsPb(Cl/Br)3 nanocubes. As a result, as-prepared Mn-doped CAS QDs give rise to a white light emission with Commission Internationale de l’Eclairage (CIE) color coordinates of (0.37, 0.33). After blending with polystyrene (PS), Mn-doped CAS QDs can be used as a single-component color conversion material for assembling white light LEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call