Abstract

Solution processing of flexible perovskite solar cells (f-PSCs) provides an avenue for scalable, high-throughput printing of lightweight, scalable, and cost-effective flexible solar cells. However, the deposition of fully solution-processed metal oxide charge transport layers on perovskites has been limited by solvent incompatibilities and high processing temperatures for metal oxide nanoparticles. In this study, we present high-performance, inverted f-PSCs from the direct deposition of yttrium-doped SnO2 nanoparticles functionalized with acetate on top of perovskite as an ink in anhydrous ethanol via blade coating. Yttrium doping improved device performance by improving the charge extraction with a decreased series resistance leading to improvements in the open-circuit voltage and fill factor. The champion power conversion efficiency for 0.1 cm2 devices increased from 14.3% for undoped SnO2 to 16.5% with 2% Y:SnO2 doping, which is unprecedented for f-PSCs on ITO-PET substrates employing SnO2 as an ETL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call