Abstract

Electrocatalysts facilitating chlorine evolution reaction (ClER) play a vital role in chlor-alkali industries. Owing to a huge amount of chlorine consumed worldwide, inexpensive high-performing catalysts for Cl2 production are highly demanded. Here, a superb ClER catalyst fabricated through uniform dispersion of Pt single atoms (SAs) in C2 N2 moieties of N-doped graphene (denoted as Pt-1) is presented, which demonstrates near 100% exclusive ClER selectivity, long-term durability, extraordinary Cl2 production rate (3500mmol h-1 gPt -1 ), and >140 000-fold increased mass activity over industrial electrodes in acidic medium. Excitingly, at the typical chlor-alkali industries' operating temperature (80°C), Pt-1 supported on carbon paper electrode requires a near thermoneutral ultralow overpotential of 5mV at 1mA cm-2 current density to initiate the ClER, consistent with the predicted density functional theory (DFT) calculations. Altogether these results show the promising electrocatalyst of Pt-1 toward ClER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call