Abstract

Epoxy resins with high thermal and mechanical performance as well as good resistance to fire are difficult to synthesize. In this work, a high-performance intrinsically flame-retardant epoxy resin (diglycidyl ether of daidzein (DGED)) was synthesized from renewable daidzein using an efficient one-step process, without the addition of additional flame retardants. The structure of DGED was confirmed by Fourier transform infrared (FTIR), 1H NMR, and 13C NMR before it was cured with 4,4′-diaminodiphenylmethane (DDM). A commercial diglycidyl ether of bisphenol A (DGEBA) was cured with the same curing agent. Results indicated that the cured DGED/DDM system possessed glass transition temperature (Tg) of up to 205 °C (172 °C for DGEBA/DDM), and tensile strength, tensile modulus, flexural strength, and flexural modulus of 83, 2972, 131, and 2980 MPa, respectively, all much higher than those of cured DGEBA/DDM. The cured DGED/DDM system demonstrated excellent flame-retardant properties, showing a residual char of 4...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call