Abstract
Although perovskite solar cell has been widely studied due to their high-efficiency potential, the design of ultra-thin perovskite solar cells for flexible and less toxic device fabrication has received less attention. The use of ultra-thin perovskite thin layer leads to low-efficiency solar cells due to insufficient absorption of light. In this paper, the optical absorption of the ultra-thin PSC is improved via surface plasmon polaritons and waveguide modes through the using a silver back grating electrode into hole transport free-layer structure. The investigations are based on the FDTD numerical method and the effects of grating dimensions and periodicity on the absorption of the active layer are systematically investigated to achieve the high performance of the structure. Also, the value of the short circuit current density was investigated by changing the dimensions of the grating. In the optimum device with the thickness of the absorber layer of 150 nm, the absorption enhancement of 20% is obtained in the wavelength 300 nm-800 nm compared to the reference flat solar cell. In addition, the design of ultrathin solar cells based on the grating electrode with perovskite thicknesses of 50 nm, 100 nm, and 200 nm is studied. The results provide a way for the design and production ultra-thin, low toxicity, and high performance solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.