Abstract
The passivation layer that naturally forms on the lithium metal surface contributes to dendrite formation in lithium metal batteries by affecting lithium nucleation uniformity during charging. Herein, we propose using vacuum thermal evaporation to produce a high-performance ultra-thin lithium metal anode (≤25 µm) with a native layer much thinner than that of extruded lithium. The evaporated lithium metal shows significantly reduced charge-transfer resistance, resulting in uniform and dense lithium plating in both carbonate and ether electrolytes. This study reveals that the evaporated lithium metal outperforms the extruded version in ether electrolyte and with LiFePO4 cathodes, showing a 30% increase in cycle life. Additionally, when paired with LiNi0.6Mn0.2Co0.2O2 cathodes in carbonate electrolyte, the evaporated anode’s cycle life is tripled compared to the extruded lithium metal. This demonstrates that vacuum thermal evaporation is a viable method for producing ultra-thin lithium metal anodes that prevent dendrite growth due to their excellent surface condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.