Abstract
In-plane heterojunction tunnel field effect transistors based on monolayer transition metal dichalcogenides are studied by means of self-consistent non-equilibrium Green’s functions simulations and an atomistic tight-binding Hamiltonian. We start by comparing several heterojunctions before focusing on the most promising ones, i.e. WTe2-MoS2 and MoTe2-MoS2. The scalability of those devices as a function of channel length is studied, and the influence of backgate voltages on device performance is analyzed. Our results indicate that, by fine-tuning the design parameters, those devices can yield extremely low subthreshold swings (<5 mV/decade) and ION/IOFF ratios higher than 108 at a supply voltage of 0.3 V, making them ideal for ultra-low power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.