Abstract
To address demands for increased data transmission rates, electrically small antennas (ESAs) that simultaneously offer large frequency bandwidths and small physical sizes are of growing interest. 3D layouts are particularly important in this context and among various 3D ESAs, systems that adopt hemispherical shapes are very promising, because they can occupy the entire Chu-sphere and offer outstanding electrical performance. Researchers have developed a few different approaches to fabricate high-quality hemispherical ESAs, but most have static layouts and fixed operating frequencies. Here, a mechanically guided 3D assembly approach is introduced for the design and fabrication of deformable hemispherical ESAs that can offer tunable, dynamic properties to adapt to changes in environmental conditions. The strategy exploits controlled compressive buckling of strategically patterned 2D precursor structures, as a low-cost and high-yield scheme that can exploit conventional, planar processing technologies and commercially available platforms. Combined numerical simulations and experimental measurements show outstanding performance characteristics in terms of the quality factor and radiation efficiency. Application of external tensile strains to elastomeric substrates for these systems allows them to be reshaped and reversibly tuned through a wide range of center frequencies. Mechanical testing under different loading conditions demonstrates the ability of these ESAs to accommodate large deformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.