Abstract

Vertical contact-separation mode triboelectric generator (TEG) based on lead-free perovskite, zinc stannate (ZnSnO3)-polyvinylidene fluoride (PVDF) composite and polyamide-6 (PA6) membrane is demonstrated. For the 5 wt% PVDF-ZnSnO3 nanocomposites, the facile phase-inversion method provides a simple route to achieve high crystallinity and β-phase with a piezoelectric coefficient d33 of −65 pm V−1, as compared to −44 pm V−1 for pristine PVDF membranes. Consequently, at a cyclic excitation impact of 490 N/3 Hz, the PVDF-ZnSnO3/PA6 based TEGs provide a significantly higher voltage of 520 V and a current density of 2.7 mA m−2 (corresponding charge density of 62.0 µC m−2), as compared to the pristine PVDF-PA6 TEG which provides up to 300 V with a current density of 0.91 mA m−2 (corresponding to a charge density of 55.0 µC m−2). This increase in the electrical output can be attributed to not only the enhanced polarisation of PVDF by ZnSnO3 leading to an increase in the β-phase content, but also to the surface charge density increase by stress induced polarisation of ZnSnO3, leading to the generation of stronger piezoelectric potential. The work thus introduces a novel method of enhancing the surface charge density via the addition of suitable high polarisation piezoelectric materials thus eliminating the need for prior charge injection for fluoropolymer membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call