Abstract
For the first time, periodic loaded electrodes and mushroom-type waveguide are combined to improve the performance of traveling-wave electroabsorption modulators (TWEAMs) based on the asymmetric intra-step-barrier coupled double strained quantum well (AICD-SQW). The electrical modulation response of periodic mushroom-type TWEAM is obtained by using equivalent circuit model, and is compared with simulation result of conventional mushroom-type TWEAM counterpart. The equivalent circuit model simulation results indicate that for the exemplary modulation length of 300 μm, the mushroom-type TWEAM with periodic transmission line loading can achieve much wider bandwidth about 99.7 GHz and 43.1 GHz than the conventional counterpart with about 43 GHz and 33 GHz for 35Ω and 45 Ω terminations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.