Abstract

Silver nanowire networks emerged recently as a remarkable substitute for indium tin oxide (ITO) transparent electrodes. Here we show that this silver nanowire alternative can be successfully processed using the same laser ablation technique commonly used to manufacture ITO devices. As a proof of concept, we have manufactured a fully operating five inch multi-touch highly-pixelated sensor typically used in smart phone technology and find it to perform comparably to one based on ITO. We observe that laser processing silver nanowire films is much more efficient from an energy point of view, with scribes hardly visible to the naked eye. We find that the sheet resistance (RS) of the nanowire films increases as a result of dividing it into finite geometries and supported by simulation data, we predict over which length scales this affect becomes significant. Our results point to the viability of using such nanowire systems as an alternative to more traditional technologies in touch sensor design while highlighting some of the challenges to be addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.