Abstract

Transition metal dichalcogenides (TMDCs) are emerging two-dimensional materials for their potential in next-generation electronics. One of the big challenges is to realize a large single-crystal TMDCs film with high mobility, which is critical for channel materials. Herein, we report an optimized atmospheric pressure chemical vapor deposition method for growing large single-crystal monolayer MoS2 on molten glass substrate with domain size up to 563 μm. Better interface quality can be achieved using high-κ dielectrics with respect to the conventional thermal SiO2. Mobility up to 24 cm2 V−1 s−1 at room temperature and 84 cm2 V−1 s−1 at 20 K can be obtained. This low-cost growth of high-quality, large single-crystal size of two dimensional materials provides a pathway for high-performance two dimensional electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.