Abstract

Textile-based triboelectric nanogenerators (TENGs) represent a groundbreaking advancement in the field of wearable technology for supplying sustainable energy. In this study, a knitted dual-faced textile-based TENGs was proposed to address the existing challenges of low energy output and poor wearability. The fabric, composed of polytetrafluoroethylene (PTFE) yarn and silver-plated yarn, features a unique intermeshed structure that enhances the corresponding TENG's output performance by increasing the contact area between the tribo-material and electrode. Such textile-based TENG have demonstrated an ability to attain open-circuit voltage, short-circuit current, and power density up to 133.8 V, 21.9 μA, and 0.53 W/m2, respectively. More importantly, the dual-faced triboelectric fabric exhibited exceptional damage insensitivity and shape tailorability, making it sustainable for long-term use in wearable devices. The textile-based TENG can power various microelectronic devices, including LED arrays and calculators, showcasing their potential as reliable energy sources for wearable electronics. Furthermore, a real-time wireless direction indication system integrated into a smart garment was developed, demonstrating the TENG's versatility in applications beyond energy harvesting, potentially in navigation assistance. The advent of the dual-faced triboelectric fabric signifies an important step forward in wearable technology, promising enhanced performance and expanded applications in both energy collection and sensing technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.