Abstract

Cylindrical vector modes with azimuthal polarization and low transmission loss are proposed for the first time to be utilized in a novel design of a surface plasmon resonance (SPR) sensor based on a circular photonic crystal fiber (C-PCF). A C-PCF with a ring of air holes in the cladding is designed where a gold layer with a thickness of 44 nm is coated on the outer cladding surface. The optimal geometric parameters are determined using the finite-element method (FEM) for a high-quality TE01 mode and high sensitivity of the sensor. The proposed SPR sensor shows high sensitivity for analyte refractive index (RI) ranging from na = 1.29 to 1.34 over the wavelength range of 1400–2000 nm. It is expected that the proposed sensor can sense low concentrations of hemoglobin, lymphocytes and monocytes of red and white blood cells which are effective in diagnosing the progress of cancer tumors. The maximum sensitivity of 13,800 nm/RIU is obtained in the refractive index environment of 1.33–1.34. The sensor resolution is of the order of 10−6 and the amplitude sensitivity reaches its maximum of 2380 RIU−1 at na = 1.30 which is the highest value ever reported. Our proposed sensor shows high sensitivity and simultaneously simple design with high performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call