Abstract

Graphene quantum dots (GQDs) with uniform sizes of less than 5 nm are synthesized by a novel top-down strategy. Nitric acid as a strong oxidant can be used to cut graphene oxide via sonication and hydrothermal processes. Moreover, purified GQDs are obtained from removing oxygen-containing functional groups in a heat treatment process. Both nanoscale size and edge effect of GQDs improve their abundant active sites and restrain the restack of graphene nanosheets. Meanwhile, their electrochemical performance demonstrates the properties of the GQDs for practical application in energy storage. The GQD electrode material shows an ideal electric double-layer capacitance behavior such as a high specific capacitance of 296.7 F g-1, a satisfactory energy density of 41.2 W h kg-1 at 1 A g-1, a low internal resistance, a small relaxation time, and an excellent cycling stability. The results illustrate excellent electrochemical activity, high conductivity, and enhanced ion transport rate on the surface of electrolyte and electrode. The advantages of GQDs confirm their unique characteristics for potential applications in the field of electrode materials for supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.