Abstract

The performance of the processor core depends on the configuration parameters and utilization of on-chip memory in multimedia applications such as image, video and audio processing. The design of the on-chip memory architecture is critical for power and area efficient design without compromising quality in data-intensive computing applications. This paper proposes a design of high speed, area, and energy efficient Static Segment On-Chip (SSOC) memory for error-tolerant applications. In this static segment method, n-bit data array is reduced by m-bit data array for significant value of input data to achieve balanced design metrics at the cost of accuracy. The proposed m-bit static segmentation algorithm is implemented and verified in Single Port Static Random Access Memory (SP SRAM) architecture for the approximate computing applications. From the overall simulation results, the proposed 4-bit SSOC SP SRAM design provides 49.02% area savings, 50.62% power reduction and 16.92% speed improvement at the cost of 0.64% Peak Signal to Noise Ratio (PSNR) and exhibits same visual quality in comparison with the existing 8-bit conventional on-chip SP SRAM design in the image processing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.