Abstract

The solid-solution reaction between an alkali cation and an active host material is known as a single-phase redox mechanism, and it is typically accompanied by a continuous voltage change. It is distinct from the typical alkali cation intercalation reaction at an equivalent site of the active host material, which exhibits a voltage plateau. Herein, we report an unusual solid-solution potassium-ion intercalation mechanism with a low-voltage plateau capacity on multilayered turbostratic graphene nanosheets (T-GNSs). Despite the disordered graphitic structure with a broad range of d-spacings (3.65–4.18 Å), the T-GNSs showed a reversible plateau capacity of ∼ 200 mA h g−1, which is higher than that of a well-ordered graphite nanoplate (∼120 mA h g−1). In addition, a sloping capacity of ∼ 220 mA h g−1 was delivered with the plateau capacity, and higher rate capabilities, better reversibility, and a more stable cycling performance were confirmed on the turbostratic microstructure. First-principles calculations suggest that the multitudinous lattice domains of the T-GNSs contain diverse intercalation sites with strong binding energies, which could be the origin of the high-performance solid-solution potassium-ion intercalation behavior when the turbostratic graphene stacks have a d-spacing smaller than that of equilibrium potassium–graphite intercalation compounds (5.35 Å).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.