Abstract

A novel slow-wave transmission line with optimized slot-type floating shields in advanced CMOS technology is presented. Periodical slot-type floating shields are inserted beneath the transmission line to provide substrate shielding and to shorten the electromagnetic (EM) propagation wavelength. This is the first study that demonstrates how the wavelength, attenuation loss, and characteristic impedance can be adjusted by changing the strip length (SL), strip spacing (SS), and metal layer position of the slot-type floating shields. Wavelength shortening needs to be achieved with a tradeoff between slow-wave effect and attenuation loss. The slot-type floating shields with different SLs, SSs and metal layer positions are analyzed. It is concluded that minimum SL provides the most optimal result. A design guideline can be established to enable circuit designers to reach the most appropriate slot-type floating shields for optimal circuit performance. Transmission line test structures were fabricated by using 45-nm CMOS process technology. Both measurement and EM waves simulation were performed up to 50 GHz. Transmission lines are frequently used at a length of half- or quarter-wavelength. With a shortened wavelength, a saving in silicon area of more than 67% can be achieved by using optimized slot-type floating shields. Experimental results demonstrated a higher effective relative permittivity value, which is improved by a factor of more than 9, and a better quality factor, which is improved by a factor of more than 6, as compared to conventional transmission lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.