Abstract
AbstractAnode-supported planar solid oxide fuel cell (SOFC) was successfully fabricated by a single step co-firing process. The cell comprised of a Ni + yittria-stabilized zirconia (YSZ) anode, a YSZ electrolyte, a Ca-doped LaMnO3 (LCM) + YSZ cathode active layer, and an LCM cathode current collector layer. The fabrication process involved tape casting of the anode, screen printing of the electrolyte and the cathode, and single step co-firing of the green-state cells at 1300°C for 2 hours. The maximum power densities were 1.50W/cm2 at 800°C, and 0.87W/cm2 at 700°C with humidified hydrogen (97% H2-3% H2O) as fuel and air as oxidant. The experimentally measured I-V curves were fitted into a polarization model to obtain cell parameters including the area specific ohmic resistance, exchange current density, effective binary diffusivity of hydrogen and water vapor in the anode, and that of oxygen and nitrogen in the cathode. The cell was also tested at 800°C with various compositions of humidified hydrogen to evaluate the cell performance at high fuel utilization, and the maximum power densities were 1.30W/cm2 with 75.7% H2-24.3% H2O, 0.94W/cm2 with 49.4% H2-50.6% H2O, and 0.49W/cm2 with 27.3% H2-70.7% H2O.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.