Abstract
The silicon-based anodes are one of the promising anodes to achieve the high energy density of all-solid-state batteries (ASSBs). Nano silicon (nSi) is considered as a suitable anode material for assembling sheet-type sulfide ASSBs using thin free-standing Li6PS5Cl (LPSC) membrane without causing short circuit. However, nSi anodes face a significant challenge in terms of rapid capacity degradation during cycling. To address this issue, dual-function Li4.4Si modified nSi anode sheets are developed, in which Li4.4Si serves a dual role by not only providing additional Li+ but also stabilizing the anode structure with its low Young's modulus upon cycling. Sheet-type ASSBs equipped with the Li4.4Si modified nSi anode, thin LPSC membrane, and LiNi0.83Co0.11Mn0.06O2 (NCM811) cathode demonstrate exceptional cycle stability, with a capacity retention of 96.16% at 0.5 C (1.18mA cm-2) after 100 cycles and maintain stability for 400 cycles. Furthermore, a remarkable cell-level energy density of 303.9Wh kg-1 is achieved at a high loading of 5.22 mAh cm-2, representing a leading level of sulfide ASSBs using electrolyte membranes at room temperature. Consequently, the chemically stable slurry process implemented in the fabrication of Li4.4Si-modified nSi anode sheet paves the way for scalable applications of high-performance sulfide ASSBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.