Abstract

AbstractSemi‐transparent organic photovoltaics (ST‐OPVs) are promising solar windows for building integration. Improving the light‐absorbing selectivity, that is, transmitting the visible photons while absorbing the invisible ones, is a key step toward high‐performance ST‐OPV. To achieve this goal, the optical properties of the active layer, transparent electrode, and capping layer are comprehensively tailored, and a highly efficient ST‐OPV with good absorbing selectivity is demonstrated. First, a numerical method is established to quantify the absorbing selectivity of materials and devices, based on which, an infrared absorbing non‐fullerene acceptor, that is, H3, is selected among a large pool of photo‐active materials. Second, an ultra‐smooth transparent thin Ag layer with small granule size is developed via polyethylenimine wetting, which alleviates light scattering and improves the electric properties for ST‐OPV. Finally, as guided by optical simulation, a TeO2 capping layer is deposited on top of the ultra‐thin Ag to further improve the light‐absorbing selectivity. As a result, the light utilization efficiency is significantly improved to 3.95 ± 0.02% (best ≈4.06%), with a good color rendering index of 76.85. These results make it one of the best among color‐neutral ST‐OPVs. This work stresses the importance of manipulating the light‐absorbing selectivity for high‐performance ST‐OPVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.