Abstract

Self-powered UV photodetector (UVPD) operates without the need for an external energy source and contributes to global energy conservation. With ongoing innovation, self-powered PDs are becoming increasingly appealing for industrial and innovation applications such as advanced environmental monitoring and communication devices. This study investigates the influence of varying working pressures (ranging from 3 to 15 mTorr) during reactive magnetron sputtering on the crystalline structure, surface morphology, and performance of SnO2 thin film photodetectors, aiming to fabricate self-powered UVPDs. The SnO2-based UVPD demonstrates exceptional self-powered UV photodetection capabilities, characterized by a sensitivity of 6.41×105%, responsivity of 0.09 mA/W, and detectivity of 2.99×1010 Jones. In addition, SnO2-based UVPD possesses a switching photo response and recovery time of 0.75 and 0.99 s. Henceforth, it was observed that 8 mTorr SnO2 thin film exhibits exceptional stability, superior photodetector performance, and remarkable repeatability, rendering them highly suitable for UVPD applications. Notably, these films demonstrate sustained functionality for approximately 100 days without necessitating encapsulation. These excellent results confirm that SnO2 thin films are suitable for fabricating future smart optoelectronics devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.