Abstract
A novel self-humidifying membrane electrode assembly (MEA) has been successfully prepared by adding both a hydrophilic organic polymer (polyvinyl alcohol, PVA) and an inorganic oxide (silica) to the anode catalyst layer. This MEA shows excellent self-humidification performance under low-humidity conditions. A sample containing 3 wt.% PVA and 3 wt.% silica in the anode catalyst layer achieves a current density as high as 1100 mA cm−2 at 0.6 V, and the highest peak power density is 780 mW cm−2, operating at 60 °C and 15% relative humidity for both anode and cathode. The sample also shows excellent stability at low-humidity: after 30 h of continuous operation under the same conditions, the current density decreases just slightly, from 1100 mA cm−2 to ca. 900 mA cm−2, whereas with MEAs to which only PVA or silica alone had been added, the current densities after 30 h is just 700 mA cm−2 and 800 mA cm−2, respectively. The improved self-humidification performance can be attributed to the synergistic effect of two hygroscopic materials in the anode catalyst layer.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.