Abstract

A series of coconut shell activated carbon catalysts, modified by metal oxides, were prepared by an ultrasound-assisted incipient wetness method for the removal of methyl mercaptan (CH3SH). The catalysts were investigated using XRD, BET, XPS, TEM and TA.The results showed that the catalyst combined with 2 wt% Fe loading and iron (Fe): copper (Cu) (mole ratio) 10 : 3, and calcination at 300 °C had a superior removal efficiency. The high activity could be attributed to the generation of highly dispersed Fe-Cu nanocomposites. The results revealed that calcination temperature not only influenced the chemical states and nanocomposite size of iron and copper, but also affected the pore structures of the catalysts. Compared with Fe/AC, the interaction between the iron and copper oxides resulted in smaller nanoparticles and high dispersion for Fe-Cu/AC. Product analysis results suggested dimethyl disulfide, metal methanesulfonates and methyl thiolates were the oxidation products which adsorbed on the activated carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call