Abstract

A novel quinoxaline-based phthalonitrile monomer, namely, 4,4′-(((quinoxaline-2,3-diylbis (oxy))bis (3,1-phenylene))bis (oxy))di-phthalonitrile (QDOP), was successfully synthesized by nucleophilic substitution reaction, which exhibits a low melting point (85°C) and a wide processing window (150°C). The QDOP monomer was cured with 4-aminophenoxy phthalonitrile (APPH) as catalyst by different temperature programs, and the curing process and kinetics were discussed in detail by non-isothermal differential scanning calorimetric (DSC). The QDOP polymer mainly forms triazine, isoindoline and phthalocyanine structure, as revealed by Fourier transform infrared (FTIR) spectroscopy, and its properties improved with the increase of post-curing temperature and curing time. After post-curing at 380°C, the polymer exhibited high storage modulus (3731 MPa), high glass-transition temperature (>400°C), and outstanding thermal stability and thermal oxidation stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call