Abstract

Fiber lasers and amplifiers are used in a variety of applications either for scientific (spectroscopy, medicine...) or industrial applications (free space communications, laser marking and drilling ...). The combination of doped double clad fibers (DCF) and high power multimode semiconductors laser diodes technologies allows to achieve very high output power in very compact, robust and maintenance free systems. Yb 3+ doped DCF are well suited for 1μm wavelength amplification. In pulsed regime, achievable peak power can be strongly limited by nonlinear effects such as Kerr effect, Stimulated Raman Scattering (SRS) or Stimulated Brillouin Scattering (SBS). Consequently, the optimisation of optical amplifier architecture is required. In this paper, we demonstrate performances obtained for the generation of 2ns optical pulses up to >1.7kW peak power in a Master Oscillator Power Fiber Amplifier (MOPFA) configuration. The laser seed signal at 1060nm is emitted out of a single longitudinal mode source with spectral linewidth 10W average output power with a good beam quality (M2 1.7kW. These high performances are obtained in a fully-integrated device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.