Abstract

Interconnection becomes one of main concerns in current and future microprocessor designs from both performance and consumption. Three-dimensional integration technology, with its capability to shorten the wire length, is a promising method to mitigate the interconnection related issues. In this paper we implement a novel high-performance processor architecture based 3D on-chip cache to show the potential performance and power benefits achievable through 3D integration technology. We separate other logic module and cache module and stack 3D cache with the processor which reduces the global interconnection, power consumption and improves access speed. The performance of 3D processor and 3D cache at different node is simulated using 3D Cacti tools and theoretical algorithms. The results show that comparing with 2D, power consumption of the storage system is reduced by about 50%, access time and cycle time of the processor increase 18.57% and 21.41%, respectively. The reduced percentage of the critical path delay is up to 81.17%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.