Abstract

Lead-free piezoelectric ceramics are urgently needed in the field of electromechanical conversion devices due to the restriction on the use of lead-based ceramics. In this study, the polymorphic phase boundary (PPB) were tuned by incorporating different concentration of (Bi0.5K0.5)HfO3 into the matrix (K0.5Na0.5)(Nb0.965Sb0.035)O3CaZrO3, and the <00l>c crystallographic texture was realized by templated grain growth method. The maximal d33 (∼550 pC/N) and kp (∼72%) were achieved in the <00l>c textured ceramics with composition around rhombohedral-orthorhombic-tetragonal (R-O-T) phase boundary. It is proposed that the enhanced piezoelectricity should be ascribed to several combined effects, which primarily contain the R-O-T phase boundary facilitating polarization rotation, the crystallographic orientation induced intrinsic piezoelectric anisotropy, electric-field-induced lattice distortion and phase transitions, and NaNbO3 seed-crystal-driven nanodomain structures. This work provides an effective solution to enhance piezoelectric properties by simultaneous tailoring polymorphic phase boundary and using crystallographic texture in potassium-sodium niobate based piezoelectric ceramics. We believe that the simple solution and design principle can also be applied to other piezoelectric ceramic systems, no matter lead-based or lead-free.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call