Abstract

The development of renewable polymers as alternatives to the petroleum-based ones has received significant attention due to the increasing depletion of fossil oil and the associated environmental concerns. In this study, a semi-biomass-based polyimide (PI) film was successfully synthesized, using biomass-derived furfural (HMFA) as one of the raw materials. A two-step approach was first developed for this process: (1) conversion of HMFA to 3,3,4,4-biphenyltetracarboxylic acid dianhydride (BPDA) and (2) polymerization of BPDA with p-phenylenediamine (PPD) to form a PI film. The fabricated PI film demonstrated excellent properties, such as a high thermal decomposition temperature up to 600 °C, a satisfactory glass transition temperature (Tg) exceeding 365 °C, a coefficient of thermal expansion (CTE) of ≈30 ppm/K, a tensile strength greater than 120 MPa, a dielectric constant value below 3.4, a dielectric loss value of less than 0.02, and a 24 h water absorption rate below 0.8%. These performances are comparable to the petrochemical-based PI. This work offers a promising strategy for utilizing biomass-derived materials in polyimide synthesis and would drive a new wave of advancements in polymer science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call