Abstract

High-performance thin-film transistors (TFTs) with electron-cyclotron resonance (ECR) plasma hydrogen passivation fabricated by the use of laser-recrystallized multiple-strip-structure poly-Si film are discussed. These TFTs have n-channel enhancement-mode characteristics with a large transconductance, a high switching ratio, and a threshold voltage as low as 0.4 v. The ECR-plasma hydrogen passivation of laser-recrystallized poly-Si, reduces the trap density of poly-Si and increases the carrier mobility thus, desirable TFT characteristics are obtained. This passivation increased the transconductance (g/sub m/) of a TFT and decreased the leakage current between the source and the drain. As a result, a switching ratio as high as 2.5*10/sup 9/ and very low leakage current of the order of 10/sup 14/ A can be achieved by these high-performance TFTs. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.