Abstract

A series of new methyl substituted poly(ether-amide)s were synthesized by using direct Yamazaki’s phosphorylative polycondensation of novel diacid 1,1-bis[4-(4-carboxymethyl phenoxy)-3-methylphenyl] cyclopentane (BCMMP) with various aromatic diamines. These polymers were characterized by FTIR spectroscopy. Inherent viscosities of these polymers were in the range 0.25 to 0.42 dL/g indicating moderate molecular weight built-up. These polymers exhibited excellent solubility in various polar aprotic solvents such as NMP, DMSO, DMAc, DMF, pyridine, and were insoluble in THF, DCM and chloroform. X-Ray diffraction pattern of polymers showed that incorporation of methyl substituent on aromatic backbone and cardo cyclopentylidene moiety containing ether linkage and methylene spacer would disturb the chain regularity and packing, leading to amorphous nature. Thermal analysis by TGA showed excellent thermal stability of polymers. The glass transition temperature Tg were in the range 195–210°C. The structure-property correlation among this poly(ether-amide)s was studied, in view of these polymer’s potential applications as high performance polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call