Abstract
To address the need for high-resolution imaging in lung nodule detection and overcome the limitations of the shallow imaging depth associated with high-frequency ultrasound and the complex structure of lung tissue, we successfully integrated 50 MHz ultrasound transducers with 18-gauge biopsy needles. Featuring a miniaturized size of 0.6 × 0.5 × 0.5 mm3, the 50 MHz micromachined 1-3 composite transducer was tested to perform mechanical scanning of a nodule within a lung-tissue-mimicking phantom in vitro. The high-frequency transducer demonstrated the ability to achieve imaging with an axial resolution of 30 μm for measuring nodule edges. Moreover, the integrated biopsy needle prototype exhibited high accuracy (1.74% discrepancy) in estimating nodule area compared to actual dimensions in vitro. These results underscore the promising potential of biopsy-needle-integrated transducers in enhancing the accuracy of endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNA) for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.