Abstract
Designing multihierarchical electromagnetic wave-absorbing composite with multiphase, multieffective, and multidimensional properties is an effective way to improve absorption performance. Metal–organic frameworks (MOFs) have a high metal content and a stable carbon framework. By adjusting the metal type, organic ligand type, and precursor ratio during the preparation process, MOF materials with different morphologies can be synthesized and transferred into multihierarchical electromagnetic wave-absorbing composites via in situ pyrolysis. Herein, based on the Kirkendall diffusion effect, an in situ anisotropic-oriented growth strategy was advanced during the pyrolysis of Prussian blue, and a new magnetic carbon composite (γ-Fe2O3 @N-rGO/MWCNT) was prepared. The composite has a multihierarchical structure consisting of pinecone-like nanoflowers and a porous carbon framework. The nanoflowers are core-shell structures with γ-Fe2O3 magnetic nanoparticles as cores and nitrogen-doped reduced graphene oxides as shells interspersed in a porous carbon framework that includes intertwined multiwalled carbon nanotubes and amorphous carbon. The minimum reflection loss (RLmin) of the samples can reach up to − 59.2 dB at 5.51 GHz. The in situ anisotropic-oriented growth strategy used in this work shows great promise for the preparation of a variety of multihierarchical structure nanocomposite electromagnetic wave-absorbing materials with abundant absorption effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.