Abstract

This work presents the next leap in piezoelectric all-ceramic composites fabricated at ultra low temperatures. The “Upside-down” composite method is further developed and instead of the water-soluble lithium molybdate used in our earlier study, an organotitanate based precursor gel is used as a binder. Utilizing heat and pressure the precursor transforms into titanium oxide which, together with lead zirconate titanate particles, forms a high-performance piezoelectric composite. The two-step fabrication method is based only on mixing and uniaxial hot-pressing sequences. The all-ceramic samples are fabricated at ultra low temperatures 275–350 °C with exceptionally high fractions of filler (filler to matrix 84:16 vol ratio) resulting in low porosity and showing excellent dielectric and piezoelectric properties. The charge coefficient d33 ∼150 pC N−1 and the voltage coefficient, g33 ∼52 mVm N−1 obtained with the developed composite outperforms many other known composites (80% and 70% higher than achieved with lithium molybdate bound upside-down composite, respectively) and are comparable even to some bulk piezoceramics and low permittivity polymer-ceramic piezocomposites. The sensor properties of the developed composite and the feasibility of the material from the application point of view are successfully demonstrated by utilizing sample elements in a charge mode acceleration sensor and sensitivities comparable to commercial devices are achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.