Abstract
Semiconductor photoelectrodes that simultaneously possess rapid charge transport and high surface area are highly desirable for efficient charge generation and collection in photoelectrochemical devices. Herein, we report mesostructured ZnO nanowires (NWs) that not only demonstrate a surface area as high as 50.7 m2/g, comparable to that of conventional nanoparticles (NPs), but also exhibit a 100 times faster electron transport rate than that in NP films. Moreover, using the comparison between NWs and NPs as an exploratory platform, we show that the synergistic effect between rapid charge transport and high surface area leads to a high performance photoelectronic formaldehyde sensor that exhibits a detection limit of as low as 5 ppb and a response of 1223% (at 10 ppm), which are, respectively, over 100 times lower and 20 times higher than those of conventional NPs-based device. Our work establishes a foundational pathway toward a better photoelectronic system by materials design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.