Abstract

A theoretical and experimental investigation of the transient thermal characteristics of a phase-change thermal energy storage (TES) unit using spherical capsules is presented. A simulation program that considers rigorously transient aspects of both the surrounding heat transfer fluid and the phase change material (PCM) packed inside the spherical capsule is developed. The overall thermal response of this TES unit is described with variation of the capsule diameter, the flow rate, and the kind of PCMs, etc. The simulation results are then compared with experimental observations. Furthermore, a unique device employing a heat pump is presented to overcome the supercooling problem which has been one of the most serious problems (especially for inorganic hydrates) in the phase-change thermal energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.