Abstract

A new generation of polythiophene-based polyelectrolytes is reported to address fundamental issues in organic electrochemical transistors (OECTs). In such devices, the semiconductor must be able to transport and store ions and possess simultaneously a very high electronic mobility. For this, the ion-conducting 6-(thiophen-3-yl) hexane-1-sulfonate tetramethylammonium monomer (THS–TMA+) is copolymerized with the hole-conducting 3-hexylthiophene (3HT) to obtain copolymers, PTHS–TMA+-co-P3HT 1–3 with a gradient architecture. The copolymers having up to 50 mol % 3HT content are easily oxidizable and are crystalline. Consequently, for the copolymers, a higher stability in water is achieved, thus reducing the amount of cross-linker needed to stabilize the film. Furthermore, OECTs using copolymers with 75 and 50 mol % of PTHS–TMA+ content exhibit 2–3 orders of magnitude higher ON/OFF ratio and an extremely lower threshold voltage (−0.15 V) compared to PTHS–TMA+. Additionally, high volumetric capacitance (C* > 100...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call