Abstract

In this paper, a new configuration for an all-optical analog-to-digital converter based on nonlinear materials has been proposed. This structure is the combination of two main parts: a quantization block followed by an optical coder. The refractive index of the nonlinear composite material varies with the intensity of the optical field. Sampling and quantizing have been performed at central wavelength $\lambda = {1550}\;{\rm nm}$λ=1550nm by three ring resonators that are filled by nonlinear material AlGaAs with linear refractive index of ${n_1} = {1.4}$n1=1.4 and Kerr index of ${{n}_2} = {1.5} \times {{10}^{ - 17}}\;{{\rm m}^2}/{\rm W}$n2=1.5×10-17m2/W. The maximum sampling rate is 260 GS/S. The sampling accuracy of the structure is 1040 KS. The overall area of the structure is ${{540\,\,\unicode{x00B5}{\rm m}}^2}$540µm2. The fast plane wave expansion method is used in the band structure calculations and the two-dimensional finite-difference time-domain method is used to calculate the transducer transmission spectrum, their resonant frequencies and quality coefficients, and the transducer output power at single wavelengths and constant intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.