Abstract

Documents are routinely captured by digital cameras in today's age owing to the availability of high quality cameras in smart phones. However, recognition of camera-captured documents is substantially more challenging as compared to traditional flat bed scanned documents due to the distortions introduced by the cameras. One of the major performancelimiting artifacts is the motion and out-of-focus blur that is often induced in the document during the capturing process. Existing approaches try to detect presence of blur in the document to inform the user for re-capturing the image. This paper reports, for the first time, an Optical Character Recognition (OCR) system that can directly recognize blurred documents on which the stateof-the-art OCR systems are unable to provide usable results. Our presented system is based on the Long Short-Term Memory (LSTM) networks and has shown promising character recognition results on both the motion-blurred and out-of-focus blurred images. One important feature of this work is that the LSTM networks have been applied directly to the gray-scale document images to avoid error-prone binarization of blurred documents. Experiments are conducted on publicly available SmartDoc-QA dataset that contains a wide variety of image blur degradations. Our presented system achieves 12.3% character error rate on the test documents, which is an over three-fold reduction in the error rate (38.9%) of the best-performing contemporary OCR system (ABBYY Fine Reader) on the same data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.