Abstract

Nonisocyanate polyurethane (NIPU) has been extensively studied because of its sustainability potential. However, the low reactivity of five-membered cyclocarbonates with amines and the side reactions at higher temperatures always sacrifice the performance of NIPUs. In this work, a bisphenol-S cyclic thiocarbonate and different amino-terminated dimer-acid polyamides (DAPAs) were used to prepare nonisocyanate polythiourethanes (SPTU-DAs). Wherein bisphenol-S acts as a hard segment due to a π-π package, plentiful hydrogen bonds introduced by DAPA units induce crystallization and nanophase separation. They both endow the NIPUs with high mechanical performance. Meanwhile, active cyclic thiocarbonate, instead of cyclic carbonate, ensures rapid synthesis under mild conditions without side reactions. The experimental results of DSC, WAXD, and DMA confirmed the existence of crystallization of SPTU-DAs. The as-prepared thermoplastic polythiourethane has a maximum strength of more than 10 MPa, which is stronger than those of the cross-linked nonisocyanate polythiourethanes reported. It is of key significance to obtain the high performance of nonisocyanate polythiourethanes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.