Abstract

With the advent of the smart factory and the Internet of Things (IoT) sensors, organic photovoltaics (OPVs) gained attention because of their ability to provide indoor power generation as an off-grid power supply. To satisfy these applications, OPVs must be capable of power generation in both outdoor and indoor at the same time for developing environmentally independent devices. For high performances in indoor irradiation, a strategy that maximizes photon utilization is essential. In this study, graphene quantum dots (GQDs), which have unique emitting properties, are introduced into a ZnO layer for efficient photon utilization of nonfullerene-based OPVs under indoor irradiation. GQDs exhibit high absorption properties in the 350-550 nm region and strong emission properties in the visible region due to down-conversion from lattice vibration. Using these properties, GQDs provide directional photon energy transfer to the bulk-heterojunction (BHJ) layer because the optical properties overlap. Additionally, the GQD-doped ZnO layer enhances shunt resistance (RSh) and forms good interfacial contact with the BHJ layer that results in increased carrier dissociation and transportation. Consequently, the fabricated device based on P(Cl-Cl)(BDD = 0.2) and IT-4F introduces GQDs exhibiting a maximum power conversion efficiency (PCE) of 14.0% with a superior enhanced short circuit current density (JSC) and fill factor (FF). Furthermore, the fabricated device exhibited high PCEs of 19.6 and 17.2% under 1000 and 200 lux indoor irradiation of light emitting diode (LED) lamps, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call