Abstract
Non-methane hydrocarbons (NMHCs) can serve as precursors of ozone and photochemical smog, and hence their highly efficient detection is of great importance for air quality monitoring. Here, we synthesized a new fluorescent perylene bisimide (PBI)-cored metallacycle complex through coordination-driven self-assembly and used it for the production of a fluorescent film sensor. The unique rectangular structure of the developed fluorophore endows the sensor with enhanced sensing performance and discriminability to n-alkanes (C5-10). Specifically, the experimental detection limits for n-pentane, n-hexane, and n-decane are 39, 7, and 1.4 mg/m3, respectively, and the corresponding linear ranges are from 39 to 2546, 7 to 1745, and 1.4 to 85 mg/m3, respectively. Moreover, the sensing is fully reversible. In tandem with a gas chromatographic separation system, the film sensor showed comparable detection ability for the n-alkanes with a commercial flame ionization detector (FID), while the film sensor needs no hydrogen; it occupies a much smaller size (30 × 30 × 44 mm3) and consumes less energy (0.215 W). Further studies demonstrated that the developed sensor can be used for on-site and real-time quantification of NHMCs, laying the foundation for developing into a portable detector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.