Abstract

In this research, a novel flash heating coating application technique was utilized to create Ni-SiC coatings on carbon steel substrates with SiC contents much higher than is achievable using certain conventional coating techniques. Hardness profiles showed that the coatings improved the substrate by as much as 121%, without affecting the substrate. Tribotests showed that the wear performance was improved by as much as 4.7× in terms of the wear rate (mm3/N·m) for the same coating when using an Al2O3 counterpart. Pure SiC coatings as a reference were also fabricated. However, the SiC coatings experienced elemental diffusion of Fe from the carbon steel substrate into the coating during fabrication. This occurred due to the increased heat input required for pure SiC to fuse to the substrate compared to the Ni-SiC coatings and resulted in decreased tribological performance. Diffusion of Fe into the coating weakened the coating’s hardness and reduced the resistance to wear. It was concluded that ceramic–metallic composite coatings can successfully be fabricated utilizing this novel flash heating technique to improve the wear resistance of ceramic counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.