Abstract

AbstractArtificial synapses can boost neuromorphic computing to overcome the inherent limitations of von Neumann architecture. As a promising memristor candidate, ferroelectric tunnel junctions (FTJ) enable the authors to successfully emulate spike‐timing‐dependent synapses. However, the nonlinear and asymmetric synaptic weight update under repeated presynaptic stimulation hampers neuromorphic computing by favoring the runaway of synaptic weights during learning. Here, the authors demonstrate an FTJ whose conductivity varies linearly and symmetrically by judiciously combining ferroelectric domain switching and oxygen vacancy migration. The artificial neural network based on this FTJ‐synapse achieves classification accuracy of 96.7% during supervised learning, which is the closest to the maximum theoretical value of 98% achieved to date. This artificial synapse also demonstrates stable unsupervised learning in a noisy environment for its well‐balanced spike‐timing‐dependent plasticity response. The novel concept of controlling ionic migration in ferroelectric materials paves the way toward highly reliable and reproducible supervised and unsupervised learning strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.