Abstract

Compared with organic photodiodes, photoresponsive organic field-effect transistors (photOFETs) exhibit higher sensitivity and lower noise. The performance of photOFETs based on conventional single layer structure operating in the near infrared (NIR) is generally poor due to the low carrier mobility of the active channel materials. We demonstrate a high performance photOFETs operating in NIR region with a structure of hybrid planar-bulk heterojunction (HPBHJ). PhotOFETs with the structures of single layer [lead phthalocyanine (PbPc) or copper phthalocyanine (CuPc)], single planar heterojunction (PHJ) of CuPc/PbPc, double PHJ of CuPc/PbPc/3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and HPBHJ of CuPc/PbPc:PTCDA were fabricated and characterized. It is concluded that the photOFET with HPBHJ structure showed superior performance compared to that with other structures, and for NIR light of wavelength 808nm, the photOFET with HPBHJ structure exhibited a large photoresponsivity of 322mA/W, a high external quantum efficiency of around 50%, and a maximal photosensitivity of 9.4×102. The high performance of HPBHJ photOFET is attributed to its high exciton dissociation efficiency and excellent hole transport ability. For 50-nm thick CuPc layer, the optimal thickness of the PbPc:PTCDA layer is found to be around 30nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.