Abstract

Ultra-thin and transparent electromagnetic interference (EMI) shielding and absorbing materials are in increasing demand for near-field electromagnetic wave attenuation in transparent electronic devices that get thinner and lighter. Here, we report chemical-doped and undoped graphene as the thinnest and transparent shield for high-performance near-field electromagnetic wave attenuation. The electromagnetic loss characterization demonstrate that a single layer graphene film exhibits a giant magnetic field transmission loss normalized to the film thickness that is at least two orders of magnitude higher than those of conventional EMI shielding and absorbing materials, which is attributed to the outstanding magnetic field mirroring in graphene. The doped and double-layer graphene films exhibit superior power and transmission losses than the commercial transparent indium tin oxide shield over the frequency range from 0.1 GHz to 6 GHz. The high-performance near-field electromagnetic wave attenuation in graphene enables broad range applications such as futuristic transparent display devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.