Abstract

High-performance thermoelectric fibers with n-type bismuth telluride (Bi2Te3) core were prepared by thermal drawing. The nanosheet microstructures of the Bi2Te3 core were tailored by the whole annealing and Bridgman annealing processes, respectively. The influence of the annealing processes on the microstructure and thermoelectric performance was investigated. As a result of the enhanced crystalline orientation of Bi2Te3 core caused by the above two kinds of annealing processes, both the electrical conductivity and thermal conductivity could be improved. Hence, the thermoelectric performance was enhanced, that is, the optimized dimensionless figure of merit (ZT) after the Bridgman annealing processes increased from 0.48 to about 1 at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.