Abstract

We report on the performance of organic field-effect transistors (OFETs) by using a series of angular-shaped naphthalene tetracarboxylic diimides as active layers. The fabricated OFET devices exhibit n-type semiconducting characteristics. The performance of OFETs can be substantially improved by modifying the surface of the gate dielectric chemically prior to the deposition of the organic semiconductors. An increased electron mobility of the OFETs was found owing to the improved crystallinity and enlarged grain sizes, which are attributed to the elevating substrate temperature during the semiconductor deposition. The highest mobility of 0.515cm2/Vs was achieved from a device fabricated at substrate temperature of 130°C with octadecyltrichlorosilane (OTS) surface modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.