Abstract

The advent of the new 5G communication standard has introduced demanding requirements for the performance of RF front-end filters, necessitating high frequency, large bandwidth, and other improved parameters. Consequently, researchers have been actively investigating the potential of surface acoustic wave resonators and film bulk acoustic resonators to address these needs, leading to the development of numerous novel structures. Through finite element simulation, a new heterogeneous stack structure Al/LN/diamond/Si with an interdigitated electrode resonant cavity is proposed. And the advantageous role of a diamond thin film in the surface acoustic wave resonant structure, including the excitation of high-frequency acoustic resonance modes and modulation of the electromechanical coupling coefficient has been studied. This structure holds promise for addressing the increasing demands for high-frequency, large-bandwidth RF front-end filters in the context of the new 5G communication standard. The results show that the central resonant frequency of the new structure resonator is 5284 MHz, the electromechanical coupling coefficient is 10.96%, and the Q factor value is 10 316, which has potential application value in the field of high-frequency filtering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call